sábado, 26 de septiembre de 2009

Densitometría
Es el nombre que recibe una técnica por la que se puede determinar la densidad de una sustancia, de un cuerpo o incluso de partes del cuerpo humano, como ocurre en la densitometría ósea. El procedimiento más habitual se basa en la proporción de luz que deja pasar y retiene una determinada masa.

Densitometria Gráfica
Sistema de medición de la densidad óptica para poder utilizar los valores correspondientes en el control de la reproducción gráfica.
En este sistema de medición se utiliza un densitometro, que es un aparato de precisión que se usa para medir la densidad óptica de un material o superficie comparándola con un estándar de densidad específico.

Modelos de color
En la teoría del color, los modelos de color describen matemáticamente cómo los colores pueden ser representados.
El modo de color expresa la cantidad máxima de datos de color que se pueden almacenar en un determinado formato de archivo gráfico.
Podemos considerar el modo de color como el contenedor en que colocamos la información sobre cada píxel de una imagen. Así, podemos guardar una cantidad pequeña de datos de color en un contenedor muy grande, pero no podremos almacenar una gran cantidad de datos de color en un contenedor muy pequeño.

Los principales modos de color utilizados en aplicaciones gráficas son:

Modo Bit Map o monocromático

Correspondiente a una profundidad de color de 1 bit, ofrece una imagen monocromática formada exclusivamente por los colores blanco y negro puros, sin tonos intermedios entre ellos.



Para convertir una imagen a modo monocromático hay que pasarla antes a modo escala de grises.

En este modo no es posible trabajar con capas ni filtros.

Modo Escala de Grises

Este modo maneja un solo canal (el negro) para trabajar con imágenes monocromáticas de 256 tonos de gris, entre el blanco y el negro.



El tono de gris de cada píxel se puede obtener bien asignándole un valor de brillo que va de 0 (negro) a 255 (blanco), bien como porcentajes de tinta negra (0% es igual a blanco y 100% es igual a negro). Las imágenes producidas con escáneres en blanco y negro o en escala de grises se visualizan normalmente en el modo escala de grises.

El modo Escala de Grises admite cualquier formato de grabación, y salvo las funciones de aplicación de color, todas las herramientas de los programas gráficos funcionan de la misma manera a como lo hacen con otras imágenes de color.

Si se convierte una imagen modo de color a un modo Escala de Grises y después se guarda y se cierra, sus valores de luminosidad permanecerán intactos, pero la información de color no podrá recuperarse.

Modo Color Indexado

Denominado así porque tiene un solo canal de color (indexado) de 8 bits, por lo que sólo se puede obtener con él un máximo de 256 colores.



En este modo, la gama de colores de la imagen se adecua a una paleta con un número restringido de ellos, por lo que puede resultar útil para trabajar con algunos formatos que sólo admiten la paleta de colores del sistema.

También resulta útil reducir una imágenes a color 8 bits para su utilización en aplicaciones multimedia, ya que con ello se consiguen ficheros de menos peso.

Su principal inconveniente es que la mayoría de las imágenes del mundo real se componen de más de 256 colores. Además, aunque admite efectos artísticos de color, muchas de las herramientas de los principales programas gráficos no están operativas con una paleta de colores tan limitada.

Modo Color RGB

Trabaja con tres canales, ofreciendo una imagen tricromática compuesta por los colores primarios de la luz, Rojo(R), Verde(G) y Azul(B), construida con 8 bits/pixel por canal (24 bits en total). Con ello se consiguen imágenes a todo color, con 16,7 millones de colores distintos disponibles, más de los que el ojo humano es capaz de diferenciar.



Es un modelo de color aditivo (la suma de todos los colores primarios produce el blanco), siendo el estándar de imagen de todo color que se utilice con monitores de video y pantallas de ordenador.

Las imágenes de color RGB se obtienen asignando un valor de intensidad a cada píxel, desde 0 (negro puro) a 255 (blanco puro) para cada uno de los componentes RGB.

Es el modo más versátil, porque es el único que admite todas las opciones y los filtros que proporcionan las aplicaciones gráficas. Además, admite cualquier formato de grabación y canales alfa.

Modo Color CMYK

Trabaja con cuatro canales de 8 bits (32 bits de profundidad de color), ofreciendo una imagen cuatricromática compuesta de los 4 colores primarios para impresión: Cyan (C), Magenta (M), Amarillo(Y) y Negro (K).



Es un modelo de color sustractivo, en el que la suma de todos los colores primarios produce teóricamente el negro, que proporciona imágenes a todo color y admite cualquier formato de grabación, siendo el más conveniente cuando se envía la imagen a una impresora de color especial o cuando se desea separar los colores para la filmación o imprenta (fotolitos).

Su principal inconveniente es que sólo es operativo en sistemas de impresión industrial y en las publicaciones de alta calidad, ya que, exceptuando los escáneres de tambor que se emplean en fotomecánica, el resto de los digitalizadores comerciales trabajan en modo RGB.

El proceso de convertir una imagen RGB al formato CMYK crea un separación de color. En general, es mejor convertir una imagen al modo CMYK después de haberla modificado. Modificar imágenes en modo RGB es más eficiente porque los archivos CMYK son un tercio más grandes que los archivos RGB.

Modo Color Lab

Consiste en tres canales, cada uno de los cuales contiene hasta 256 tonalidades diferentes: un canal L de Luminosidad y dos canales cromáticos, A (que oscila entre verde y rojo) y B (que oscila entre azul y amarillo). El componente de luminosidad L va de 0 (negro) a 100 (blanco). Los componentes A (eje rojo-verde) y B (eje azul-amarillo) van de +120 a -120.



El modelo de color Lab se basa en el modelo propuesto en 1931 por la CIE (Commission Internationale d'Eclairage) como estándar internacional para medir el color. En 1976, este modelo se perfeccionó y se denominó CIE Lab.



El color Lab es independiente del dispositivo, creando colores coherentes con independencia de los dispositivos concretos para crear o reproducir la imagen (monitores, impresoras, etc.).

Este modo permite cambiar la luminosidad de una imagen sin alterar los valores de tono y saturación del color, siendo adecuado para transferir imágenes de unos sistemas a otros, pues los valores cromáticos se mantienen independientes del dispositivo de salida de la imagen.



Se usa sobre todo para trabajar en imágenes Photo CD o para modificar la luminancia y los valores del color de una imagen independientemente. También se puede usar el modo Lab para conservar la fidelidad del color al trasladar archivos entre sistemas y para imprimir en impresoras de PostScript de Nivel 2.

Sólo las impresoras PostScript de nivel 2 puede reproducir esta imágenes. Para impresiones normales, se recomienda pasar las imágenes a RGB o a CMYK.

Modo Duotono

Modo de color que trabaja con imágenes en escala de grises, a las que se le pueden añadir tintas planas (3 para cada imagen, más el negro), con el fin de colorear distintas gamas de grises.



Sólo posee un canal de color (Duotono, Tritono o Cuatritono, dependiendo del número de tintas).

Con este método podemos obtener fotos en blanco y negro viradas al color que queramos. Suele ser empleado en impresión, donde se usan dos o más planchas para añadir riqueza y profundidad tonal a una imagen de escala de grises.

El problema que presenta este modo es que en los duotonos, tritonos y cuadritonos sólo hay un canal, por lo que no es posible tratar cada tinta de forma distinta según las zonas de la imagen. Es decir, no podemos hacer una zona en la que solo haya, por ejemplo, un parche cuadrado de tinta roja, mientras que en el resto sólo hay una imagen de semitono en blanco y negro.

Modo Multicanal

Posee múltiples canales de 256 niveles de grises, descomponiendo la imagen en tantos canales alfa como canales de color tuviera el original (una imagen RGB quedará descompuesta en 3 canales y una CMYK en 4 canales).

En este modo, cada tinta es un canal que a la hora de imprimir se superpondrá en el orden que determinemos sobre los otros. Por ello, es posible tratar cada zona de forma particularizada.



Se utiliza en determinadas situaciones de impresión en escala de grises. También, para ensamblar canales individuales de diversas imágenes antes de convertir la nueva imagen a un modo de color, pues los canales de color de tinta plana se conservan si se convierte una imagen a modo multicanal.

Al convertir una imagen en color a multicanal, la nueva información de escala de grises se basa en los valores de color de los píxeles de cada canal. Si la imagen estaba en modo CMYK, el modo multicanal crea canales de tinta plana cian, magenta, amarilla y negra. Si estaba en modo RGB, se crean canales de tinta plana cian, magenta y amarilla.



HSV
Representado por primera vez por Alby Smith en 1978, HSV busca representar las relaciones entre los colores, y mejorar el modelo de color RGB. Manteniendo el matiz, saturación y el valor, HSV representa un color tridimensional. Si piensas sobre el HSV como una rueda de queso, el eje central va desde el blanco en la parte superior hacia el negro en la inferior, con otros colores neutrales en el medio. El ángulo del eje representa el matiz, la distancia desde el eje representa la saturación, y la distancia a lo largo del eje representa el valor.



El ángulo del eje representa el matiz, la distancia desde el eje representa la saturación, y la distancia a lo largo del eje representa el valor.

HSL
Como el HSV, HSL fue representado por Alvy Ray Smith y es una representación 3D del color. HSL mantiene el matiz, saturación, y luminosidad. El modelo de color HSL tiene claras ventajas sobre el modelo HSV, en el sentido que los componentes de saturación y luminosidad expanden el rango entero de valores.

Basados en el modelo de color HSL, ColoRotate contiene todos los matices en diferentes niveles de saturación a lo largo de su plano horizontal y con variantes en la intensidad a lo largo de su plano vertical.

Por ejemplo, usando el modo "Matiz", puedes posicionar los colores en los lados opuestos del diamante para que se correspondan con los colores complementarios. O puedes arreglar los colores así sus matices son ubicados triangularmente, relativos entre sí para un esquema de color triádico. Y, utilizando tres dimensiones cuando editas los colores o las paletas de colores, puedes intuitivamente entender cuales colores son similares, y cuales contrastan.

En el plano horizontal ecuatoriano, los matices puros saturados están a lo largo del perímetro ecuatorial. Similar a la rueda tradicional de color y las representaciones de color esféricas, los matices contrastantes son ubicados opuestos entre sí. A medida que te mueves hacia el centro del disco de color (en el mismo plano) la saturación del color disminuye hacia el centro, donde todos los colores se unen en una único gris. Moviéndote verticalmente a lo largo de este centro, el color gradualmente se va aclarando hacia arriba (finalizando en blanco), y oscureciendo hacia abajo (finalizando en negro). Los matices varían en intensidad y saturación a medida que te mueves verticalmente arriba y abajo, o hacia el interior del diamante. Cualquier matiz dado puede variar en saturación moviéndose hacia adentro o en intensidad (tinta) moviéndose verticalmente arriba o abajo.



En el bicon o diamante de la estructura HSL, todos los colores visibles se pueden ver. Estas son las tres dimensiones en el que nuestro cerebro analiza los colores que vemos. La primera dimensión es el brillo (el tramo vertical). El matiz está compuesto de la segunda y tercera dimensión (que corresponde a los tramos redondos a través del diamante).

Modelo Hexdecimal

La codificación hexadecimal del color permite expresar fácilmente un color concreto de la escala RGB, utilizando la notación hexadecimal. Se utiliza, por ejemplo, en el lenguaje HTML y en JavaScript.

Este sistema utiliza la combinación de tres códigos de dos dígitos para expresar las diferentes intensidades de los colores primarios RGB (Red, Green, Blue, rojo, verde y azul).

El blanco y el negro

Negro #000000 Los tres canales están al mínimo 00, 00 y 00
Blanco #ffffff Los tres canales están al máximo ff, ff y ff

En el sistema de numeración hexadecimal, además de los números del 0 al 9 se utilizan seis letras con un valor numérico equivalente; a=10, b=11, c=12, d=13, e=14 y f=15. La correspondencia entre la numeración hexadecimal y la decimal u ordinaria viene dada por la siguiente fórmula:

decimal = primera cifra hexadecimal * 16 + segunda cifra hexadecimal
La intensidad máxima es ff, que se corresponde con (15*16)+15= 255 en decimal, y la nula es 00, también 0 en decimal. De esta manera, cualquier color queda definido por tres pares de dígitos.

Los tres colores básicos
Rojo #ff0000 El canal de rojo está al máximo y los otros dos al mínimo
Verde #00ff00 El canal del verde está al máximo y los otros dos al mínimo
Azul #0000ff El canal del azul está al máximo y los otros dos al mínimo

Las combinaciones básicas
Amarillo #ffff00 Los canales rojo y verde están al máximo
Cyan #00ffff Los canales azul y verde están al máximo
Magenta #ff00ff Los canales rojo y azul están al máximo
Gris claro #D0D0D0 Los tres canales tienen la misma intensidad
Gris oscuro #5e5e5e Los tres canales tienen la misma intensidad

ESPACIO DE COLOR

Un espacio de color es donde los componentes del modelo de color son definidos con precisión, permitiendo a los observadores saber exáctamente como se ve cada color.

La representación de la física del espacio de color comenzó con una rueda de dos dimensiones que te permitía ver el matiz (rojo, azul, verde, etc.) y el brillo de los diferentes colores. Más tarde, surgió el concepto de colores sólidos. Los colores sólidos son representaciones tri-dimensionales del espacio de color. Además del matiz y el brillo en el modelo bi-dimensional, un color sólido muestra degradés de saturación para un matiz particular. La mayoría de los colores sólidos están en la forma de una esfera, pero esto es en gran medida una cuestión de conveniencia. Los colores sólidos pueden tener cualquier forma.

No hay comentarios:

Publicar un comentario